(資料圖片)
1、托勒密(Ptolemy)定理指出,圓的內(nèi)接凸四邊形兩對對邊乘積的和等于兩條對角線的乘積。
2、 原文:圓的內(nèi)接四邊形中,兩對角線所包矩形的面積等于 一組對邊所包矩形的面積與另一組對邊所包矩形的面積之和。
3、 從這個定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理實質(zhì)上是關(guān)于共圓性的基本性質(zhì)。
4、 一般幾何教科書中的“托勒密定理”,實出自依巴谷(Hipparchus)之手,托勒密只是從他的書中摘出。
5、 摘出并完善后的托勒密(Ptolemy)定理指出,圓的內(nèi)接凸四邊形兩對對邊乘積的和等于兩條對角線的乘積。
6、 定理表述:圓的內(nèi)接四邊形中,兩對角線所包矩形的面積等于 一組對邊所包矩形的面積與另一組對邊所包矩形的面積之和。
7、 從這個定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理實質(zhì)上是關(guān)于共圓性的基本性質(zhì).。
相信通過托勒密這篇文章能幫到你,在和好朋友分享的時候,也歡迎感興趣小伙伴們一起來探討。
本文由用戶上傳,如有侵權(quán)請聯(lián)系刪除!Copyright @ 2015-2022 海外生活網(wǎng)版權(quán)所有 備案號: 滬ICP備2020036824號-21 聯(lián)系郵箱:562 66 29@qq.com